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F.bstract

From the strict mathematical viewpoint, it is impossible to fully achieve the goal of
digital image processing, which ].sto determine an unknown function of two dimensions from
a finite number of discrete measurements Linearly related to it. However, the necessity
to display image data in a form that is visually useful to an observer s~persedee such
mathematically correct admonitions. Engineering defines the technological limits of what
kind of image processing can be dorie and how the resulting image can be dieplayed. The
appeal and usefulneea of the final image to the human eye pertains
Effective

to aesthetics.
imago processing necessitates unification of mathematical theory, practical

implementation, and artistic display.

Introduction

Figure 1 shows the basic elements of any imaging scheme. The fundamental pcrpoee of
imaging ie to convey information about the object to the observer, u~ually a human beincj.
The measurements obtained at the input stage of imaging can assume various forms. They
might coneist of spatially separated samples of the luminosity of visioly detectable
light, as in light photography. Qr. as is most often the caee in medical imaging, the
measurements might be of nonvisual quantities, such as x-ray intensity, the strength or
time delay of sonic pulses, or the inteneity of radiation being emitted by the object. In
the newest form of medical imaging, that of nuclear magnetic resonance, the measurenlents
iavolve a complex arrangement of magnetic and radiofrequency fields and the quantities
being imaged are closely related to the density of the nuclei under study in combination
with the re!.axation times of the nuclear spins. Betweun the measurements and the disp~ay
of the final image, soma form of processing takes place. In photography or film-based
radiography, the process~.ng consists in fi.Lmdevelopment, We will be more concerned here
with digital image processing in which the measurements are manipulated by a digital
computsr . In order to emphdsize the urlity of the processing and display stagee of
.maging, we will assume the term “image praceesing” comprises both. lt is typically
duslred that the observer ~ynthesize the displayed information in orc!er to draw a
conclusion (make a diagr,osis) about the object. Thus, the a“~ailable infarmatio~l ohould be
presented to the observer in such a way that he can most readily interpret it. Presently,
the most efficient way to pres6nt the human ob~erver with a vast amaunt of correlated
information is through his visual sense. Thus, we will assume the end product of image
processing i~ a visual image or picture. Indeed, those who practice imag~ processing are
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Fioure 1. It is the nurnose of irnaminm to
nrovide an obsarver, usually a human bei)lrr,
inf~rmation ;bout the obiect under studv,
‘rbe information content is fundamentally liq-
ited hv the measurements taken. Imafleproc-
essing, which naturally includ.’sboth t,~e
orocesain~ and di.8olay staqes of the i~q~i!lm
chain, ghoul(lConvev as much of that ir?for”a-
tion as nossible in a form uee(!ul to the
observer,
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fortunate to have something visible to show for their efforts. This is one of the most
appaaling aspecta of image processing. However, sight of the final image is too ~ften
lost in the euphorie. that accompanies the comprehension of tho mathematics. While ].tis
hard to imagine, it may be possible in the future to transmit information to the brain in
an entirely different way, which cculd prove more effective than vision.

The foundation of image processing rests on mathematics. Mathematical theory assures
us that it is impossible to unambiguously determine an arbitrary fb.tction of two
dimensions from a finite number of discrete, noiseless measurements linearly related to
ib. This impossibility is summarized under the concept of the null space of functions
associated with any measurement scheme. “ 2 Thus, it would appear to follow that from a
finite number of measurements, no reasonable estimate of the original image can be
inferred. 3 In view of all the successful applications of imag~ processing existent, such a
conclusion is ridiculous, of course. Those who see only the niathematics a.e blind to the
objective, the final image. In this paper we will discuss the roots of the above-stated
mathematical restrictions, how they are overcome to produce a useful image and some of the
factors that affect the usefulness of the image for human visual cott~unption. The
underlying principle is that the goal of image processing is the production of a usefuL
final image.

As we shall see, the displayed results reLate fundamentally back to the initial
measurements. While the design of the measurement scheme should be considereci in a
unified approach to any imaging problem, we will not discuss such desigri
here .

irt any detail
In medical imaging, diagnosis is more often maie on the basis of patterns discerned

in the images than on the basis of absolute imaga values. Thus, q~”,antitativeimaging will
not be addreased, even though it may be useful in other contexts. I+ny ~f the examples
used to demonstrate the ideas presented are related to computed tomograph!’ (CT). This is
montly because the author has had extenmive experience in this field. }.owever, the
unusuil incongruity between
inherent in CT makes it a
concepts.

we consider an imaging s

the measurement geometry and the normal dkspl.ay geome’.ry
provocative modality in which to Learn image processing

Mathematical Foundations

tuation in which it is desired to detern,i.neand ,iisplay a
auantitv f(x,v) that is a function of the two continuous variables x and Y (usually. . .
spatial coordinate). The quantity f may be some physical variable containing ~nf~rmatio;
about the object under study. For simplicity, let us aesume the measurements are LinearLy
relat~d to f. ?he ith discrete measurement may be written de

gi - // hi(x,y)f(x,y)dxdy (L)

where h ie the respcmse function, or weighting function, that deecribes how much the
value o} fat each point (x.y)contributes totheith measurement. Theobj,ective ofirnage
proceaeinq is to reconstruct or restore the function f from the given qi and preeent it to
the observer. The author ham deecribed in previ.oue work~’i’~ ?kle interFratation of the
functionm f and h a. vectorm in a Hilbert epace and the implied coneequances concerning
the inveroion of Eq. (.1). Rather than repeat thoee Lncantatione here, let us coneidec \
simpler, but Loee complete, approach. Suppoee the measurements are actually project~ons
or Li”.eintegrals, a. in CT. ‘rhsn each hi in a 2-D 6-functLon/ zero ●verywhere except UII
the straight line of integration. Figure 2 ehnwa the lines of integration that might ho
available for a coarsely-sampled CT measurement scheme. Clearly, the functional values of
f in the regions between the linee do not contribute to the measurements. Because :he
data carry no information about f in the regions between the Linee, the valueo of E LII
theee regione cannot be reconstructed from the data. Thie inability to detsrmine certain
aepecte of f correspond to the existencs of a eubepuce in the Hilbert space of f known as
the nulL space. A ●imilar manifestation of the null space Lo the ●ituation in which one
is preoented with a p}iotograph of El Tovar Lodge, It would be impoceibLe to infer what ,1
photograph taken at right anglee to the first one wouLd Look Like, unless otle knew
beforehand that El Tovar Lu perchmd on the rim of the magnificent r3rand Canyon. vVw
suppone the maaourements consist of etrip integrala instead of LLn@ integr~ls, such t.l]at
each ●trip is cantered on the formerly used line and is just wide enough to touch the
neighboring strip. Then the meaeuremente euggeeted by Fig. 2 would completely cover t}le
area shown. The /alue of 1! at each point would contribute to one and unLy one strip
integral f:om ●ach direction. It chould not be surprising that in ●UCI] a limLtMJd
measurement geometry, a uiynificant null space still existrnl even though the prevko~a
argument falis down.



Figure 2, The ray paths that correspon~ to
coarsely sampled projection measurements (2A
views, each containing 7 samples). If the
measurements truly consist of line intearals
alonu the lines shown, the reuions that lie
between the lines do not contribute to the
available measurements and hence correspond
to the null space.

The preeence of a null space is essentially a resuLt of a many-to-one transformation,
which L.nnerently cannot be inverted without ambiguities. A finite number of discrete
meaeuremente of a function of? continuous var+abLes, as are used in digital image
processing, comprise an infinite-ta-ons traneformation. He_ce, the original function can
never be unambiguously recovered. Further, eince all physical meaeuremente are subject to
finite resolution, they always have a null space associated with them. Therefore, alL
imaging systems have a null space correepondlng to the Lack of information at arbitrarily
high spatial frequencies. The axistonce of the nuLl associated
limited-data problem has been known for a iong time. 3’5-L5 How~~e~,

with the
its ex~licit effect in

practical reccr,struction problems has not been welL elucidated. A simple method of
generating the null-space part of an arbitrary object function corresponding to any CT
measurement geometry is presented in Ref. L. The author has found the concepts of HiLbert
apace and of the nulL epace associated with meaeuramente/t.=neformati.ons to be extremely
useful in approaching a varinty of probLems in image analyeis. For example, the nuLL

accounts Eor the following: the renownefl siia~ing effect t,hat accompsniee discrete
~~;3ingL6; the artifacte attendant with the restoration of blurrea imaqee : the
limitations inherent in Limited-angle tomography, and, in general, the infinity of
soLutions to ill-poead problems. s

The measurements are blind to the nulL epace; they provide no Lnf~rmatiGn about the
components of any original function f Lying in the null ~pace. That .~art of f not
contained in the null epace can be determined from the meaauremente. The corraeponding
subepace, which is orthogonal to the null apace, 18 appropriately f-alLed the measu’fement
apace . Since the moasuremant spaca ie comprised of all functiofie Lhat can be written ae a
Linear combination of the reeponee functione, the expaneion

f(x,y) = ~ aihi(x,y) (2)

provides a means for constructing an aetimate that ie whoLLy contained in tht measurmmont
space . This expaneion ie so instinctive that the reeponee functione hhve been caLled
08naturaL pixeLe.”L7 AS an aeide, the dimeneion of the meaeur.ment sPa~e can be found bY

performing an ●&gonanalysie of the gramian matrix. ths eL@ments of which are the overlap
integrale between taach pair of responee functions. The number of nonzaco ●iganvalues
givoe tho dimeneionality. Thie has been caLLed the “number of! degrees of freedom”id of
the measurement geometry, and~ in some senoe, indi.catee the number of Lridapendent pieces
of Lnformasion that the meaeuremente poeseee. of couree, the diekinction aetween a zero
ei,genvalue and a very smalL one ie only posuible (and perhaps meaningful) Ln puru
mathematics, In application whero real, noisy data muet b. used, thi.e distinction
fadec. Thus the number of degreee of freedom may not be a PreCLe91y defLnud flumbcr in
practice. In fact, it Lo roaeonab~c to ●often tho language of pure mathumatice when
dealing with real probLome and say, for sxampLo, that a particular subspace Le “nearly”
complete, or that a matrix is “eueentf,aLly” sir,gul~r (nor\-einguLar, but wLt]i very -mall

singular valuee), ●tc.



The ambiguities

+

associated w th the null space typically result in artifacts in
r9conatru&i0ns. Th9s* artifac depend upon how the null-apace components of the

estimated function arm handled.1 n an attempt to make the inversion unique, which is a
predilection of mathematician, i is common practice to require ~at out of the many
po.siblo molutiona, the particular one with minimum norm be chosen. IiAia amounts to
dornanding tho null.-epac. components of the solution have zero amplitude. The minimum-norm
criterion limits tho reconstruction to have the form of the response-function expansion,
Eq. (2). As in the El Tovar example above, a better gueso of the null-seace components
can be made if there is prior knowledge available about the object under investigation.
The Bayesian approach, l’4’lg’20 which entails the use of such prior kncwledge, can
sometimee reduce reconstruction artifacts when the prior knowledge ifiKfSStLiCtlW enough.
In such casee, the null-space components of the reconstruction are r%placed by & better
estimate than zero through the use of the prior information. The types of prior kn~wledga
that have been studied in conjunction with CT include non-negativity of f, %nown region of
support of f, and structural information about object. L~Q Somewhat akin to tha
minimum-norm condition in its action, the requirement of maximum entropy has been applied
to image inversion.21-27 Maximum entropy also intrinsically imposes a nonnegativity
constraint on f, which may account far its improved performance over traditional
reconstruction methods.27 The maximum-entropy approach hae been fervently espoused by
somelN27#20 as a fundamental principle. Others, while acknowledging che successful
results of maximum-entropy practitioners, have fwnd difficulty accepting the fundamental
tenet that the value of the reconstruction at each location should be interpreted as a
probability.2g It La refreshing to hear one O; the maximum entropists30 adl~titthere is no
reason to prefer the maximum-entropy result over a host of othsr solutions; it is useful
because it works (produces visually pleasing results). Note that when nonlinear
constraints, such aa nonnegativity or maximum entropy, are invoked, the con-~pt of a
13ilbert space is strictly no longer applicable, since the definition of a Hilbert space
includes linearity. One must talk of the null set instead of the null space, etct

The observer

The human observer is the final link in the imaging chain. Because t}ie objective of
Lmege processing is ~0 Present the observer with a displayed image ttmt will allow him to
dr~w maximal information about the ubject, it is important to understand some of the
characteristics of the human observer. Ignoring color and motion, some of the aspects of
th~ human eye-brain system worth considering are the following:

a) visual acuity (resolution)
bj thresticld for detection of low-contrast signals
c) influence of display brightness
d) influence of surround brightness
e) Mach-band phenomenon and o+.her illusions
f) tolerance for visual noise
9) ability to synthesize correlated patterna
h) ability to assess statistical reliability
i) ability to use prior information in interpretatir

These ob8erver characteristi=a range from the obviouu to the more subtle. Those dppearing
at the top of the list probably spring to evaryone’a mind. It is o~viously nssential that
the displayed image be Large ●nough, have enough contrast and brightudss, and be p:esented
in a suitably lit environment~~~’32 The effect of random image noise on the ability of
humsn observers to detect simple, low-contrast eignals agali,st a constant background has
recently been studied ●xtensively by Burgess et al.]3’3* They fi[ld humans can “noise
average” nearly as well as a mathematically id-al observer. Furthermore, the human calldo
well ovor a wido rang. of display contrasts.35 However, when visuai noise becomes too
severe, observer performance su~fers. Although Little is known about the Lnfluanca of the
Mach-band affect upon the interpretation of images, it may be rion-negligible. It is worth
remembering that although seeing may be believing it may not rapresent the truth,

The Last three items listed above deaL with the higher Level processing that the F,uman
brain can obviously parform. The radiologist 1s rlistingui.shed from ths proverbial
“trained observer” by his ability to uae prior knowledge. Through his tlainir,g, the
radiologist haa learned how to relate what he #ees in radiographs to what he knowl. abodt
anatomy, together with other information about the patient, to reach a ditignosls. [t
oeems we arc a Long way from fully understanding theso high-level capabilities of human
vision. HOWeVOr, they are fundamental to the successful us. of the displayed Lmage. The
effoative coupling to these high-level function8 has rosultcd in ~oms of the blggeet
aahievemento in Lmago processing. Computed tomography provides a cplendiu exampln. Its
suac~aa critically hingeo on the display of the reconstruction as a proper cross section
of humm ●natomy~ which is so ●asy to interpret that a Layman can often wee what is wr;~n,.j,
In contract, tho etraight forward display of projection data would be Lmposslble for any



human to interpret except for the simplest of objects. See the lacer example (Fig. 3).
The human ohaerver doee not seem to be able to efficiently synthesize information over
widely spaced regions of an image or, even harder, over different imagem. The human also
canaot effectively deal with complex coded images such as ~hoee produced by coded
apertures. Although it may not be possible to understand the complex functioning of the
human observer in terms of formulae, it behoovee the image proceseor to develop an
intuitive understanding of what humana can and cannot eee in imagee. Thdy mUSt develop a
s-riseof the a~gthetic in much the same way aa aCtlStS must. They cannot judge their own
results without this understa.lding. Although some mention is made of the limitations of
human vision in the standard textbooks on imacfa processing, 16,36-38 the in,portance of
meetiag the needa of the human obsarver is not emphasized.
fun.

Obviously, mathematics is more
Perha>s the aesthetic aspects of uueful imagee cannot be learned from a textbook,

but can only be assimilated through experience, in much the same ~ay as the radiologist
needs years of residency to complete his education.

If it were possible to develop a complete mathematical model of human vision, it might
be feasible to ‘optimize” th8 display of processed images. Unfortunately, such a model
still eludes us. Many tifferent kinds of models of human vision have bet.1 proposed.
Overington3g has used knowledge about the physiological structure of the eya to correctly
predict the contrast sensitivity curve for human observers. It does not seem as though
this kind of model can help u,adesign display techniques, because the influence of image
noise is not included. Similarly, Cohen, et al.31 developed an empirical model to explain
their contrast sensitivity measurements, including the effects of surround brightness.
Baxter et a~.~~ have proposed a visual model based in part upon the light adaptation of
retinal photoreceptors, which takes into account the surround brightness through occular
light scatter. The human contrast sensitivity has been incorporated by Huntqi into a
constrained least-squaree restoration technique. However, its sole effect is to provide
another means of regula~izing the solution by attenuating the [construction at high
spatial frequencies, which, it is argued, humane cannot detect anyway. If the results
wele visualLy pleaaing, it would probably be more because of coincidence than because the
contrast sensitivity curve was employed. The effect of random image noise on observer
performance has been the subject of the studiee by Burgess, et al.33’3q Human observers
were found to be able to perform the rjiven detection tacks almost as well aa the ideal
observer.’+z This has led to the suggestion 33’3q’q3 that .svar~ation of the ideal observer
may be used as a model for the human. While it seems likely that the human contains ~ome
elements of the ideal Bayesian estimator that are operative under ideal display
cofiditions, a number of deficiencies in the human observer must be addrebsed. These
include the inability to detect minute contrast difference and the degradation incurred
when the surrwnd brightness is much differefit than the display brightness. There iJ room
for more observer experinlentation because only the simplest detection tasks have been
addressed .IIJfar. As the specified observer tasks become more complex, th~ use of
information at higher spatial frequencies is raqulred to perform optimally.44’45 This may
hinder the ability of the human to approach the mathematical ideal.

The Displayed Image

‘rho display of the final image should be fashioned to efficiently couple to the
eye-brain system of the observer. It ie neceesary to overcome the mathematical di.ct.um
that it is impossitla to completely determine an unknown 2-D function from discrete data.
In practice, the display of pro:eseed image data is usually made possible by Limitirg the
spatial resolution, of the displayed image. This is Consistent with the limited visual
resolution of the human eye. There is no need to display information at higher spatial.
frequencies than the observer :an see. In spite of the limitation in spatial resolution,
for a given set of available data there may still exist a null space and its associated
ambiguities. A unique solution may requ),re a further restriction, such ae that of minimum
norm, as discussed above. Thure are a number of waye in which the resolution of the
dispLay can be limited. Perhaps the eimplest is to display the image with a large, but
fini~e number of pixels, sufficient to provido the desired resolution. When the available
data have not been sampled with fine ●nough resolution to allow such ad approach, it may
be desirable to interpolate between the available samples in order to display a
,f~cent-sized image.Q6 such interpolation of a coarsely sampled ima9e does not increaee the
number of dbgreea of freedom of the reeult. ‘7 It simply offers a more pleasing display of
the available data. Alternatively, somo reconstruction algorithms, based upon analytic
mothodo, such aa filtered backprojection~ ~8 allow the resolution tc be adjueted by
sa’loctior of the cut-off frequency of a low-paes filter. Other algorithm naturally lead
to eetimates of th● final reeult that are continuous functions of the opatial
variables. 17109’50 The resolution of tht final renult can be choson in many of theee also,
We will discu88 these in conjunction with the ●xamples below.

,4 number of ●ngineering aspects concerning the phyeical display syetem should be
constdarea. Whatever the display system, CRT or film, it ia desirable to select the sLze
of t)~eImage and the number of pixels to make cure the display meets or exceede the visual
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Figure 3, Examplernof various
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mathods of disPLayin~ coarselv sampl~d projection data (60
Wiows, 32 samploslview), taken from Ref. 50, in order of i.mprovlng visual uaeculness:
●l contour plot of projection data, b) isometric pr::e::ion (or 3-D rrnlief) of same,
c) continuous tone (gray-scale) display of same, ::32 pixel reconstruction of
original scene from the data using square piXOla, e) tha came reconmtru~tiun dieplayed

ueing bilinear interpolation, f) 32 x 32 grid reconstruction from the same data using

B-mpline baeis functions, and g) imaga of original object~ Tha ueual graphical displays

a) and b) do not show the eye tho rich etructure contained in Lhe projection data as weLL
aa the cnntinuoue-tuno rendition c) doee. Note the disconcerting effects produced by

baeie functions that aither are diecontinuoum d) or have discontinuous derivatives u).
The reconstruction f) comes the closost to providi~~g the eYe $Jith the ne~e89~rY
information to ascertain whether the larger, central objects (four eample-spacl.nyn wl(le)
are circLee or ●quaree.

..



resolution of the observer. For medium-size CRT screens, the number of pi~els needed is
in ehe neighborhood of 10002 to 20002. The display shauld not flicker, indicating an
advantage to noninteclaced over interlaced CTRS and rapid refresh rat.ea (50 or 60 Hertz).
Although there seems to be a lack of concern in the medical-imagi~g Communitj, or even a
preferefice to the contrary, it is reasonable to require that the raster lines abut one
another rather than allow interline gaps. This permits the display of a constant function
as * constant luminance field, instead of a picket fence . The display should not
introduce any graininess or noise itself. This has been ? problem in scme film/CRT
hardcopy systems. The number of gray levels should txs sufficient to present a visibly
continuous gray-scale. The author feels approximately 256 gray levels is the minimum
number required to avoid the contouring effect of too few levels. Also, one should be
wary of discontinuous gray-scales that can occur in switching to the next leading binary
bit of the video digital-to-analog converter (DAC). In most cases, it seems the use of
pseudo-color to display monochrome images can only hinder interpretation. However, CO1OC
may be useful in the production of eye-catching presentations (for nonoiasnostic, but
equally important promotional use), the display of quantitative reconstruction values, or
tne repcesentatlon of addit:onai degrees of freedom present in the data. In the following
examples, the gray-scale images were displayed on a Comtal Vision One/20 with 5122 pixels
and 256 gray levels. The hardcopies were obtained using a LogE/Dunn Instruments, model
635 camera.

The remaining figures provide examples of some of the important factors in the display
of the final image. Figuces 3a-f show various ways of displaying the same coarsely
sampled projection measurements of the ociglnal ob:ect, Fig. 3g. Typical conputer graphic
displays, Fig. 3a and 3b, do not provide the eye with as much informati~ . aiout the raw
projection data as a gray-scale display, Fig. 3c, in which one can even “&ea” evidence OE
the trajectories of the small circles in the object. However, Fig. 3C is not easy to
interpret because compact features in the original ob]ect are smeared out along sinusoida’.
paths. The tomographic reconstructions, Figs. 3d-f, of the original image fcom these
projection data provide an even better visual presentation of the object. Thus, a
rearrangement of the available data by means of the reconstruction procedure yields an
image that can be interpreted much more readily by the human observer. This demonstrates
one of the reasons for the huge success of CT as a medical diagnostic tool. As described
in Ref. 50, Fig. 3d is reconstructed using the iterative ART algorithm. The projections
of the reconstructed image are obtained by performing the 2-D strip integral over the
image under the common assumption that it is composed of piecewise-constant, square
regions~ called pixels. When the result is displaved in the same way as it is calculated,
as square pixels, the blocky appearance is very disconcerting to the eye. A common remedy
to this is the use of bil~near interpolation to display the same result, as sho~n in
Fig. 3e. This is somewhat more agreeable to the eye but still possesses visible ~rtltacts
arising from the discontinuitles in slope inherent in bilinear interpolation. In a more
unified approach to reconstruction, it is assumed that the final ima$e is a linear
combination of basis functions. hg~so Such an expansion defines the reconstruction funCCIOn
everywhere . The displayed image is precisely the same as the calculated reconstruction
because no interpolation is necessary. when basis funcLlons based upon cubic B-spllnes
ace used instead of square pixels~ Fig. 3f results. This reconstruct~on does not possess
the undesirable display artifacts of the previous two and provides a reasonable visual
indication of which of the four large central objects are squaree and which are circles.
This is expected to be a difficult discrimination task given the coarse $amEling of the
projection, as it is known to raly heavily on information at high
frequencies.qk’ks

spatial
Figure 3 demonstrates that the way in which the availsble data are

displayed can greatly lnfAuence the &MOUnt of information that can be extracted from them.
The reason for this has to do with how well each display mode interfaces to the high-level
proc~ssing of the human brain. CT reconstruction works well because ic prcduces a display
with the same morphology as the object, which the eye is accustomed to interpreting.

The choice of the spacing and width of the basis functiors used to represent the
reconstruction directly influence its spatial re~olution. Figure 4 shows higher
resolution versions of Figure 3e when the measurements consist uf llne or strip integrals.
The improvement in resolution achieved by using a 128 x 128 basis-functicn grid instead ok
a 32 x 32 grid permits the result to more closely approximate th? measurement-space
solution discussed eaclicr. For the line-integral measurement, the measurement-space
solution ideally consists of a linear combination of lines~ each wlch inflr,itesimal width.
Even the approximation to thlr minimum-norm solution, Fig. 4a, is not visually appealing.
The result for ztri~ integrals Fig. 4b, is better? mostly because the measur6mants at
each angle compiete~y cover the rocunstruction region. It would seem to follow that
measurements should *! clenlgn~d to achleva full coverage of the region to be
reconstructed. 1: i$ aim c(licluded that it ir beet to limit the resolution of the
displayed lmagt~ as in Fig. 3f, to avoid the appearance of spatial Frequencies at which
thera can be no information in tho data. becauec of the diucrete sampling theorem in this
cao9 . This La where the stcicturos of mathematics must be abandoned in fMVOr of producing
an aesthetically pl@aeing image. In limiting the resolution, Lt ie desiratla to avoid the



Figure 4. Reconstructions from same data as in Figure 3 on “I128 x 128 qric?usinq s~line
basis functions under the assumption that the measurements are a) line intearals and b)
strip integrals. The use of the finer grid allows the reconstruction to anproach the math-
ematical pure, measurement-space solution, which may not be visually aopealinq.

consequences of aliasingso, namely ,.oir6 effectsL6 and ringing at edges, the Gibbs’
phenomenon. 36

Figure 5 shows the improvement in displaying a blurred photograph that can be achieved
through image processing. The blur, which was produced by camera motion during the
exposure, rendecs the photographic image very difficult~ even impossible tc read. Through
an enhancement of the recorded information at the apprc)priate spatial frequencies, the
reco:,structed image is easily interpreted. This rasult is obtained using a linear version
OE the maximum a

~t
osteriori probability (MAP) restoration techniqueL9’5L

blurred image is c osen
in which the

the ensemble average of f. ‘Thesimilar, well-known Wiener
filter would produce a comparable result. Image processing succeeds here because the
eye-brain system cannot accomplish the deblurr:ng needed to interpret tne information
present in the photograph. Incidentally, the recurring artiEacts in Fig. St arise from
the periodic nature of the zeros in the :nodulation transfer function (MT?) of the blur
function and are a result of the null space associated with the blur. Figure 6 presents
another example in which a reodering of the available information facilitates better human
interpretation. In this case, the radiograph is known to be of an axially symmetric

SA
f-u

Figure 5. In n typical example of the power o? diqital imaqe nrocessina, ~inear PAPrestz-
ration of a photograph a) that is subjected to linear-motion blur, produces an eminentlv
readable result b).
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Figure 6. The grooves machined into an axially symmetric object, althouuh not all observ-
~.inal radiable i~ a) the or’ ograph, become visible in b) its tomoaraohic reconstruction

[Abel inversion) . After reconstruction. interpretation is limited W the noise in the.
original radiograph, which indicates that the m~ximum amount of information contained in the
radiograph is bzing extractkd.

object. Tomographic reconstruction under tha assumption of this symmetrysz (Abe1
inversion) yields Fig. 6b. The inner-most grooves in the object cannot be seen in the
original radiograph. Their luminosity contrast in directly reading the radiograph is
roughly 3.0% on the end face and 1.5% on the inside cone. These grooves are fairly
visible in the reconstruction bacause their contrast is now substantial. Only the noise
in the displayed image might hinder their detection. Since this noise originates in the
original radiograph, this mode of display is truly approaching the goal of image
processing, which ie the complete extraction of the information contained ir. the
measurements. These last two examples pOiflt out the need to conserve tne information
inherent in the data through the entire image processing procedure. The early imaging
stages should be subjected to partic’~lar scrutiny for loss of information. Since the
objective of the processing is to overcome the Limitation of the observer in viewing the
original data, it is unwise to judge the adequacy of the data or of the digitization af
input images, as with mlcrodensitometers, on the basis of direct viewing of the
unprocessed data.

Imago Quality

The term “image quality” is a treacherous one because it seems to mean different things
to different @opLe. It is reasonable that image quality should be dependent upon the
specified visual task to be performed. What is a good image for one tack may not be good
for a different taak. This diminishes the usefulness of universal figuree of merit, which
are so often propoeed. While the simplicity of these measures of image quality 15
appealing, they are an oversimplification. In an attempt to define useful and calculable
measures of image quality, it has often baen assumed that the noise in the image is the
limiting factor in interpretation .h2’5;-56 Although this may be tru~ of the ideal
observer, it ie clearly not the case for haman observers when the displzy ie inadequate,
de illustrated in Fige. 3-6. Nevertheless, such an approach has many redeeming valuee.
It is poesible to characterize the information content of an image5s’56 through the
straightforward maasuremont of the optical transfer function36 (OTF, eimilar to MTF, but
includes scaling of o~tput relative to input) of the imaging system and the noise power
spectral density (NPSJ in the image. ‘l%is approach is gen~ral because the information
content of an image is given ae a functian of frequency (number of noise-equivalent quanta
NEQ(f))o once the tack is specified, it is possible to determine how accurately it can be
performed by integrating tho NE@ spectrum with the appropriate weighting function.*2’b*

● rms noise and signal-to-noiso ratio SNR,I’he us’lal and simple engineering definition o.
are woefully inadequate. we learn Lhat SNR is only meaningful when associated with a
given task. The SNR may be considered to be a function of spatial frequency. Then the
total SNR2 ie just the integral of SNR2!f) over all frequencies. It followe that typical



filtering operation can only decrease the SNR associated with a
they may discard image information (SNR). Note that because of its
noise cannot be reduced or eliminated, as is often stated, without

epecific task
unpredictable
affecting the

because
nature,
desired

signal also. Another adva~tage of this approach is that the statistical efficiency of
transferring information through each step of the imaging chain may be determined. If the
statistical efficiency of all. the intermediate stages is close to 100%, as it is in CT
reconstruction57, the image qualit ~ can be calculated at the measurement stage. This can
make the calculation much easier. 5 In this way image quality can be related fundamentally
to the tnitial measurement.

There is obviously a close connection between image quality, defined in terms of task
performance, and the model for the human observer. As such a model emerges, it will
become clearer how to properly assess image quality. It will be difficult, but necessary,
to quantify the more complex, high-level capabilities of the human obeerver. Only then
will we be able to “understand” why the CT reconstruction in Fig. 3f has better image
quality fou human interpretation than the display ~f the projection data, Fig. 3c, even
though both contain the same information.

Discussion

We have pursuud the consequences of the tenet that the aim of image proceeding is to
help the human observer visually interpret image data. of prirre importance is the final
displayed image, as thaL is what the observer looks at. Mathematics plays a fundamental
role in guiding image processing, but at times one must transcend mathematics in order to
obtain a result. Attention must be paid to the engineering and aesthetic asl>ects of the
display. Without a comprehensive model of the human observer, the selection of the
preferred display mode is based more Jn artistic than scientific grounds. After all the
technology, the “eye” is the judge.

In this paper, we have restricted ourselves mainly to image processing. Of course,
what has been said about image proceeding is applicable to imaging as a whole. In fact,
it is best to approach any imaging task in a systematic way instead of a piece at a time,
as is done so often. Image processing cannot overcome a deficit of information in the
meas!lrements. Thus , the requirements of the final image ehould guide the design of the
measurement schema, as it should each step of the imaging chain. An important aspect of a
systems approach to diagnosis is th~ selection of the kind of measurements to take. The
radiologist should obviously choose the imaging modality, or combination of modalities, 53
that are most relevant to answering the questions at hand.
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